5 research outputs found

    Μελέτη και εγκατάσταση συστήματος απογύμνωσης ιόντων στον 5.5 MV επιταχυντή Tandem Van de Graaff του Ε.Κ.Ε.Φ.Ε. "Δημόκριτος".

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Φυσική και Τεχνολογικές Εφαρμογές

    Magnetospheric effects on cosmic rays during the magnetic storm of March 2015

    Get PDF
    Cosmic ray variations of magnetospheric origin during the magnetic storm on 17th of March 2015 were studied. Cosmic ray intensity data were obtained from the neutron monitor database (NMDB) and the data of the Dst index were taken from World Data Center for Geomagnetism, Kyoto. The global survey method was employed for the calculation of changes in the cutoff rigidities throughout the storm. A correlation analysis between the Dst index and the calculated cutoff rigidity variations was performed for each cosmic ray station. The most essential decrease in cutoff rigidities occured when the Dst index was around the value of -234nT. A latitudinal distribution of the cutoff rigidities was acquired, showing that the maximum effect took place at mid-latitude stations with rigidities around 8-10GV. During the examined event the maximum change in cutoff rigidity was observed at Athens station where the decrease of the cutoff rigidity reached the value of 1.07GV. Furthermore, corrections of cosmic ray intensity due to the magnetospheric effect were calculated using the derived cutoff rigidities showing a discperancy with the observed values at mid- and low- latitude stations

    Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations

    No full text
    The use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like ( 1 s 2 1 S , 1 s 2 s 3 , 1 S ) mixed-state beams, the spectrum contributions of the 1 s 2 s 3 S metastable beam component is effectively separated and clearly identified. This is performed with a technique that exploits two independent spectrum measurements under the same collision conditions, but with ions having quite different metastable fractions, judiciously selected by varying the ion beam charge-stripping conditions. Details of the technique are presented together with characteristic examples. In collisions of 4 MeV B 3 + with H 2 targets, the Auger electron spectrum of the separated 1 s 2 s 3 S boron beam component allows for a detailed analysis of the formation of the 1 s 2 s ( 3 S ) n l 2 L states by direct n l transfer. In addition, the production of hollow 2 s 2 p 1 , 3 P doubly- and 2 s 2 p 2 2 D triply-excited states, by direct excitation and transfer-excitation processes, respectively, can also be independently studied. In similar mixed-state beam collisions of 15 MeV C 4 + with H 2 , He, Ne and Ar targets, the contributions of the 1 s 2 , 1 s 2 s 3 , 1 S beam components to the formation of the 2 s 2 p 3 , 1 P states by double-excitation, 1 s → 2 p excitation and transfer-loss processes can be clearly identified, facilitating comparisons with theoretical calculations

    Radiative Cascade Repopulation of 1s2s2p 4P States Formed by Single Electron Capture in 2–18 MeV Collisions of C4+ (1s2s 3S) with He

    No full text
    This study focuses on the details of cascade repopulation of doubly excited triply open-shell C3+(1s2s2p)4P and 2P± states produced in 2–18 MeV collisions of C4+(1s2s3S) with He. Such cascade calculations are necessary for the correct determination of the ratio R of their cross sections, used as a measure of spin statistics [Madesis et al. PRL 124 (2020) 113401]. Here, we present the details of our cascade calculations within a new matrix formulation based on the well-known diagrammatic cascade approach [Curtis, Am. J. Phys. 36 (1968) 1123], extended to also include Auger depopulation. The initial populations of the 1s2snℓ4L and 1s2snℓ2L levels included in our analysis are obtained from the direct nℓ single electron capture (SEC) cross sections, calculated using the novel three-electron close-coupling (3eAOCC) approach. All relevant radiative branching ratios (RBR) for n≤4 were computed using the COWAN code. While doublet RBRs are found to be very small, quartet RBRs are found to be large, indicating cascade feeding to be important only for quartets, consistent with previous findings. Calculations including up to third order cascades, extended to n→∞ using an n−3 SEC model, showed a ∼60% increase of the 1s2s2p4P populations due to cascades, resulting, for the first time, in R values in good overall agreement with experiment
    corecore